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Abstract—Objective techniques have been developed to consis-7
tently identify cloudy pixels over nonpolar regions in multispectral8
imager data coincident with measurements taken by the Clouds9
and Earth’s Radiant Energy System (CERES) on the Tropical10
Rainfall Measuring Mission (TRMM), Terra, and Aqua satellites.11
The daytime method uses the 0.65-, 3.8-, 10.8-, and 12.0-µm12
channels on the TRMM Visible and Infrared Scanner (VIRS) andAQ3 13
the Terra and Aqua MODIS. The VIRS and Terra 1.6-µm channel14
and the Aqua 1.38- and 2.1-µm channels are used secondarily.15
The primary nighttime radiances are from the 3.8-, 10.8-, and16
12.0-µm channels. Significant differences were found between the17
VIRS and Terra 1.6-µm and the Terra and Aqua 3.8-µm channels’18
calibrations. Cascading threshold tests provide clear or cloudy19
classifications that are qualified according to confidence levels or20
other conditions, such as sunglint, that affect the classification.21
The initial infrared threshold test classifies ∼43% of the pixels22
as clouds. The next level seeks consistency in three (two) different23
channels during daytime (nighttime) and accounts for roughly24
40% (25%) of the pixels. The third tier uses refined thresholds25
to classify remaining pixels. For cloudy pixels, ∼4% yield no26
retrieval when analyzed with a cloud retrieval algorithm. The27
techniques were applied to data between 1998 and 2006 to yield28
average nonpolar cloud amounts of ∼0.60. Averages among the29
platforms differ by < 0.01 and are comparable to surface clima-30
tological values, but roughly 0.07 less than means from two other31
satellite analyses, primarily as a result of missing small subpixel32
and thin clouds.33

Index Terms—Cloud, cloud detection, cloud mask, Clouds and34
Earth’s Radiant Energy System (CERES), Moderate Resolution35
Imaging Spectroradiometer (MODIS), Visible and Infrared36
Scanner (VIRS).37

I. INTRODUCTION38

S IMULTANEOUS measurement of the radiation and cloud39

fields on a global basis has long been recognized as a40

key component in understanding and modeling the interaction41
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between clouds and radiation at the top of the atmosphere, 42

at the surface, and within the atmosphere. The NASA Clouds 43

and Earth’s Radiant Energy System (CERES) Project [1] began 44

meeting this need in 1998 with the launch of its first broadband 45

shortwave and total band scanners along with the Visible and 46

Infrared Scanner (VIRS) on the Tropical Rainfall Measuring 47

Mission (TRMM) satellite in late 1997. During late 1999 and 48

early 2002, the Terra and Aqua satellites, respectively, were 49

launched with instrument packages that included two CERES 50

scanners each and the Moderate Resolution Imaging Spec- 51

troradiometer (MODIS). Together, those satellites have been 52

providing the most comprehensive global characterization of 53

clouds and radiation to date. CERES was designed to fly with 54

high-resolution imagers so that the cloud conditions could be 55

evaluated for every CERES measurement. The cloud properties, 56

specifically, cloud fraction, phase, temperature, height, optical 57

depth, effective particle size, and condensed/frozen water path, 58

are key parameters needed to link the atmospheric radiation 59

and hydrological budgets. Among other applications, they are 60

essential for selecting the proper anisotropic directional models 61

[2] used to convert the CERES radiances to the shortwave 62

albedo and the longwave fluxes needed to define the radiation 63

budget (ERB) at the top of the atmosphere (TOA). Cloud 64

and aerosol properties coincident with broadband radiation 65

measurements are also necessary for sorting out the direct 66

and indirect effects of aerosols on climate. In summary, the 67

combined data sets are critical to understanding the impact of 68

clouds on the ERB at the surface and on the radiative heating 69

profile within the atmosphere. By combining the broadband 70

fluxes with cloud and aerosol properties determined in a radia- 71

tively consistent manner, the CERES data set should provide an 72

unprecedented set of constraints for climate model assessment 73

and improvement. 74

The CERES program planned, from its inception [3], [4], 75

to analyze coincident imager data to obtain cloud and aerosol 76

properties that could be precisely matched with the CERES 77

scanner fields of view. To obtain a data set useful for study- 78

ing climate trends, it was recognized that the above cloud 79

and radiation fields must be determined using consistent al- 80

gorithms, auxiliary input (e.g., atmospheric temperature and 81

humidity profiles), and calibrations across platforms to mini- 82

mize instrument- and algorithm-induced changes in the record. 83

By combining the precessing orbit TRMM data with the late 84
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morning Terra and early afternoon Aqua observations, CERES85

would measure the complete diurnal cycle of clouds and radia-86

tion for the Tropics and obtain unprecedented sampling of those87

same fields in the extra-tropics. Because of the requirements88

for consistency, simultaneity, and collocation between the cloud89

and radiation measurements, it was necessary to develop a set90

of algorithms and a processing system independently of other91

global cloud processing systems that were either operating or92

being developed prior to launch of the first CERES-bearing93

orbiter. The International Satellite Cloud Climatology Project94

(ISCCP) has been deriving cloud properties from geostation-95

ary and NOAA polar-orbiting satellites since 1983 [5], but96

its products could not be used because ISCCP samples the97

imager data at an effective resolution of ∼32 km (larger than98

a CERES footprint, ∼20 km), cloud particle size is assumed99

in the retrievals, and simultaneity with the CERES satellites is100

very limited. The MODIS Atmosphere Science Team (MAST)101

also planned to derive pixel-level cloud properties from the102

MODIS data [6], [7] but employed algorithms that used many103

of the 36 MODIS spectral bands and auxiliary input data that104

are not necessarily consistent over time. The MAST algorithms,105

which have been used to generate the MOD06 and MOD35106

products [8], precluded the use of the VIRS because it is107

limited to five channels and would not be able to yield cloud108

properties consistent with the MOD06 and MOD35 results.109

Furthermore, CERES requires complete cloud information for110

each footprint, and that is not always available in the MOD06111

products.112

Although the failure of the TRMM CERES scanner early113

in the mission obviated some of the consistency requirements,114

other more important factors necessitated the development of115

independent cloud and aerosol analysis algorithms. CERES is116

an end-to-end processing system with cloud properties feeding117

into subsystems that determine TOA, surface, and atmospheric118

radiative fluxes, including a complex time-space averaging119

subsystem that employs geostationary satellite measurements120

[1]. The cloud detection and retrieval algorithms had to be121

responsive to the needs of the downstream processing systems122

and had to be as consistent as possible with the CERES123

geostationary satellite data processing system [9]. Given the124

limitations of external cloud data sets and the internal team125

interaction and consistency requirements, a unique set of cloud126

detection and retrieval algorithms was developed for CERES127

utilizing as few channels as possible while producing stable and128

accurate cloud properties that are compatible with the CERES129

anisotropic models.130

The first step in the cloud retrievals is discriminating between131

cloudy and cloud-free pixels, the cloud mask. Methods for132

distinguishing between cloudy and clear pixels are as many133

and diverse as the motivations for using them, as discussed in134

detail by Gomez-Chova et al. [10]. Generally, each technique is135

developed to accomplish a certain goal that involves treating136

clouds as interference or as information. For example, the137

ISCCP was designed to provide a long-term cloud climatol-138

ogy that covers the diurnal cycle. Thus, it used only 0.65-139

and 11-µm channels on geostationary satellites to ensure the140

ability to perform consistent analyses over many years, even141

though more spectral channels have become available during142

the last decade. To minimize cloud contamination in their 143

aerosol retrievals, the MAST aerosol group developed a cloud 144

mask [11] based on spatial variability that differs from that 145

used by the MAST clouds group [6]. Monitoring ocean color 146

also seeks to minimize cloud interference but uses spectral 147

ratios to determine cloud-free scenes [12]. The motivation for 148

developing the CERES mask was designed for consistency over 149

time among different satellite instruments with the primary 150

goal of accurately detecting those clouds having the greatest 151

radiative impact on the radiation budget. 152

This paper provides an overview of the algorithms used by 153

CERES to detect clouds in nonpolar regions. The CERES cloud 154

mask defines a given imager pixel as clear or cloudy or, in 155

some cases, as bad data. The clear and cloudy classifications 156

are further denoted as weak or good to denote a level of 157

certainty, the former being less certain than the latter. The weak 158

category is defined based on how close the observed radiances 159

come to the expected clear-sky values. In clear conditions, 160

the pixel can also be identified as being covered by aerosol 161

(e.g., heavy dust), smoke, fire, shadow, or snow, or affected by 162

sunglint. Cloudy pixels can also be identified as being affected 163

by sunglint. The subclassifications are made available to users 164

in deciding whether the results are reliable and whether they 165

can be useful for studying certain phenomena such as aerosol 166

radiative forcing or snow albedo. 167

This is the first of a series of four papers [13]–[15] that 168

describe the CERES cloud analysis system for VIRS Edition 169

2 (Ed2), Terra Ed2, and Aqua Edition 1 (Ed1). The initial 170

VIRS cloud mask was completed in 1998 and updated, along 171

with Terra Ed1, to the Ed2 versions in 2003. Processing of 172

the MODIS data for CERES using all three of the editions 173

described here began during 2004. 174

II. DATA 175

The input data used in the CERES cloud detection algorithms 176

consist of the imager radiances and fixed and variable ancillary 177

information. 178

A. Satellite Radiances 179

1) VIRS: The TRMM VIRS is a five-channel imager that 180

measures radiances at 0.65 (visible, VIS), 1.61 (near-infrared, 181

NIR), 3.78 (shortwave-infrared, SIR), 10.8 (infrared, IR), and 182

12.0 (split window, SW) µm with a nominal 2-km spatial 183

resolution [16]. Table I lists the VIRS and MODIS channels 184

available to CERES. For simplicity, unless otherwise noted, the 185

CERES reference channel numbers will be used throughout this 186

paper to refer to a given wavelength. The VIRS cross-track scan 187

extends out to a viewing zenith angle VZA (θ) of 48◦ and, 188

from the 35◦ inclined orbit, yields coverage roughly between 189

38◦ N and 38 ◦ S. The TRMM orbit gives the VIRS a viewing 190

perspective distinctly different from either geostationary or 191

Sun-synchronous satellites. It samples all local times of day 192

over a 45-day period. At the Equator, this sampling is evenly 193

distributed over the period, but, at higher latitudes, the views are 194

primarily in darkness for roughly two weeks followed by two 195

weeks of sunlight. The CERES shortwave and total broadband 196
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TABLE I
IMAGER CHANNELS INGESTED IN CERES PROCESSING AND USED IN

CERES CLOUD MASK. VIRS DATA ARE 2-km RESOLUTION. ALL

MODIS DATA ARE 1-km RESOLUTION, EXCEPT FOR CHANNEL 1,
WHICH HAS BOTH 1- AND 0.25-km RESOLUTIONS

scanners have a nominal field of view size of ∼10 km. The197

VIRS data were obtained from the NASA Langley Distributed198

Active Archive Center.199

Version-5a VIRS data are analyzed by CERES at full res-200

olution. The Version-5a VIRS VIS SIR, IR, and SW channel201

calibrations appear to be quite stable [17]–[19], but there is202

a slight day–night calibration difference in the IR and SW203

channels that is not taken into account here [18]. The VIRS204

NIR channel suffers from a thermal leak at 5.2 µm that is205

corrected using an updated version [20] of the Ignatov and206

Stowe correction [21]. Although no other calibration problems207

were revealed in initial studies [22], [23], they did not examine208

the absolute calibration of the channel. Other investigations of209

the VIRS NIR channel indicated that its gain was too low by210

∼0.17 compared to other data and theoretical computations211

using cloud microphysical models [17], [24].212

The MODIS and VIRS 1.6-µm channels have similar spec-213

tral bands and, therefore, should produce similar reflectances214

for the same scene. To further investigate the apparent 17%215

calibration discrepancy, the Terra MODIS and VIRS NIR chan-216

nel radiances were matched and intercalibrated as in [19] using217

data taken over ocean from every other month between March218

2000 and March 2004 when Version 5a ended. Fig. 1 shows219

scatter plots with linear regressions for matched data from two220

of those months. The VIRS radiances were normalized to the221

MODIS solar constant of 75.05 W · m−2 · sr−1 · µm−1. The222

slopes of the fits are 1.209 and 1.177 for March and September223

2001, respectively. Overall, the slopes ranged from 1.163 in224

November 2003 to 1.232 with a mean value of 1.193, and225

the mean offset was 0.0 W · m−2 · sr−1 · µm−1. No significant226

trends were detected during the four-year period. A small227

portion of the differences in the gains may be due to the slight228

differences in the spectral response functions, but the majority229

of the discrepancy is due to underestimation of the radiances230

by the VIRS calibration. The 1.17 correction factor applied to231

the VIRS NIR channel during the CERES processing should232

have taken care of much of the calibration bias. Although 233

the TRMM CERES scanner failed after August 1998 and was 234

resuscitated for 1 month, March 2000, the TRMM Ed2 CERES 235

cloud products were also generated from VIRS data taken from 236

January 1998 to July 2001. VIRS continues to operate as of this 237

writing. 238

2) MODIS: Terra MODIS [25] began collecting data start- 239

ing in late February 2000 from a Sun-synchronous orbit with 240

a 1030-LT equatorial crossing time. Aqua MODIS became 241

operational in July 2002 from a Sun-synchronous orbit with a 242

1330-LT equatorial crossing time. CERES ingests a 19-channel 243

subset of the 36-channel MODIS complement (Table I) with 244

the intention of using additional channels in future editions 245

of the algorithms and in other subsystems besides the cloud 246

codes. The 0.25-km channel-1 (0.645 µm) pixels corresponding 247

to the 1-km channel-1 pixels are also included in the ingested 248

data for future use. The 1-km MODIS data are sampled every 249

other pixel and every other scan line to reduce processing 250

time. This subsetted data set, provided by the NASA Goddard 251

Space Flight Center Distributed Active Archive Center, was 252

further reduced by sampling every other pixel during actual 253

processing, yielding an effective resolution of 8 km. For a 254

given CERES footprint (∼20 km at nadir for Aqua and Terra), 255

the subsampling yields unbiased cloud amounts relative to 256

the full resolution sampling. The standard deviation of the 257

cloud amount differences between the full and subsampled 258

data set is 0.035. The CERES-MODIS (CM) Terra Ed2 cloud 259

analysis algorithms use the 0.65-, 1.64-, 3.79-, 10.8-, and 260

12.0-µm channels. Because the Aqua 1.64-µm channel did not 261

operate properly, the Aqua Ed1 nonpolar cloud mask used the 262

2.13-µm channel (CERES reference channel 7) instead. In 263

addition, the Aqua Ed1 algorithms used the 1.38- and 8.5-µm 264

channels to improve thin cirrus cloud detection after some 265

obvious deficiencies were found in the Terra Ed2 cloud mask. 266

The Terra VIS channel gain was found to drop by 1.17% 267

after November 18, 2003, but otherwise had no trends. That 268

sudden calibration change is not taken into account in Terra 269

Ed2 nor has it disappeared in Terra MODIS Collection-5 data. 270

If that decrease is taken into account for all Terra data taken 271

after a noted date, the trend-free Aqua VIS channel gain is 1% 272

greater than its Terra counterparts [19]. The Aqua reflectance 273

is 4.6% greater, on average, than that from VIRS, a result that 274

is consistent with the theoretical differences between the VIRS 275

and MODIS spectral windows. The gain in the Terra 1.64-µm 276

channel was examined for trends using the deep convective 277

cloud method as in [19]. A statistically insignificant decrease 278

in the gain of 0.27% y−1 was found from linear regression. It is 279

concluded that the Terra 1.64-µm channel calibration is stable 280

during the six-year period. 281

The relative calibrations of the Aqua and Terra 3.79-, 10.8-, 282

and 12.0-µm channels were examined using the methods of 283

Minnis et al. [18], [19]. Fig. 2 shows scatter plots of the 284

matched 3.79-µm data taken over the polar regions on August 285

2004. During daytime [Fig. 2(a)], the slope of the linear fit is 286

1.006, and on average, the Terra SIR brightness temperatures 287

are 0.57 K greater than those from Aqua. This result is typ- 288

ical for the period between 2002 and 2006 (Table II), during 289

which the mean difference is 0.55 K with no trends. At night, 290
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Fig. 1. Intercalibration of VIRS channel-2 and Terra MODIS channel-6 radiances over ocean for (a) March and (b) September 2001.

Fig. 2. Intercalibration of Aqua and Terra MODIS channel-20 brightness temperatures on August 2004 during the (a) day and (b) night.

data having brightness temperatures Tb > 250 K are linearly291

correlated as during the daytime, but the Terra temperatures292

asymptote to a value of 218 K as the Aqua values reach293

197 K. This behavior is seen in every month of the intercal-294

ibrations indicating a systematic problem with the Terra data295

at night. In the initial VIRS-Terra intercalibrations [18], there296

were too few data points to definitively determine this discrep-297

ancy at the low end of the Terra temperature range. Thus, the298

VIRS-Terra intercalibrations were repeated for the 2002–2006299

period using data from every other month. The nocturnal results300

are the same as those in Fig. 2(b). The large biases in the301

average SIR brightness temperature differences (BTDs) at night302

for Terra and Aqua (Table II) reflect the strong contribution of303

the colder temperatures to the average because the data were304

taken over polar regions, whereas less conspicuous nighttime305

BTDs for VIRS-Terra and VIRS-Aqua result from having fewer306

very low temperatures during the tropical night. During the day,307

the VIRS SIR brightness temperatures are 1.39 K and 0.85 K308

less than the Terra and Aqua values, respectively, confirming309

the 0.55-K bias between Aqua and Terra SIR daytime data.310

The intercalibrations among the three instruments’ IR and311

SW channels are summarized in Table II. The differences312

between the Terra and Aqua 10.8- and 12.0-µm Tb’s are slightly313

TABLE II
AVERAGE DIFFERENCES IN MATCHED BRIGHTNESS TEMPERATURES

FROM THERMAL CHANNEL INTERCALIBRATIONS

larger at night than during the daytime. This difference appears 314

to be the result of somewhat larger Terra Tb’s at the low end 315

of the range, temperatures that are infrequently observed in 316

the daytime comparisons. This discrepancy at the low end 317

appears to have been eliminated in the MODIS Collection-5 318

data. Roughly half of the nearly 1-K bias between the VIRS 319

and MODIS SW Tb’s can be explained by the differences in 320

the spectral response functions [18]. In the data processing, 321

spectral differences are taken into account theoretically. The 322

only calibration corrections made to the raw radiances are 323

those for the VIRS 1.6-µm channel, as noted earlier. The other 324

calibration differences, such as those in Fig. 2 and discussed 325

earlier, were not corrected prior to analysis because they were 326

not known before the start of the subject CERES Edition 327
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processing. To date, the CERES cloud analysis algorithms have328

been applied to Terra and Aqua Collection-4 MODIS data329

through April 2006 and to Collection-5 MODIS data from330

January to December 2006.331

B. Variable Ancillary Data332

The CERES Meteorology, Ozone, and Aerosol (MOA) data333

set includes vertical profiles of temperature, humidity, wind,334

and ozone and total aerosol amounts. The ozone data, which335

include the total column concentration, are taken from the 2.5◦336

National Centers for Environmental Prediction’s Stratosphere337

Monitoring Ozone Blended Analysis (SMOBA) [26] or from338

the Earth Probe Total Ozone Mapping Spectrometer (total339

column optical depth only) at a 1.25◦ resolution when SMOBA340

data are not available. The CERES MOA temperature, wind,341

and humidity profiles are based on numerical weather analyses342

(NWAs): The European Centre for Medium-range Weather343

Forecasting (ECMWF) reanalyses for VIRS and on the Global344

Modeling Assimilation Office GEOS 4.03 analyses [27] for345

the MODIS processing. The ECMWF profiles were available346

at a nominal resolution of 0.5◦ every 6 h, and surface skin347

temperature Tskin was available every 3 h. GEOS profiles and348

skin temperatures were made available at the same temporal349

resolutions on a 1◦ grid. All input MOA data were interpolated350

to produce, on a common 1◦ × 1◦ grid, surface skin tempera-351

ture, geopotential height, pressure, total column ozone, profiles352

of temperature, specific humidity, and ozone at up to 58 levels353

from the surface to 0.1 hPa [28].AQ4 354

Daily ice and snow extent data were obtained from the Near355

Real-Time SSM/I EASE-Grid Daily Global Ice Concentration356

and Snow Extent products [29] on a nominal 25-km polar stere-357

ographic grid and supplemented by the NESDIS Interactive358

Multisensor Snow and Ice Mapping System Daily Northern359

Hemisphere Snow and Ice Analysis in the vicinity of coastlines360

[30]. All snow and ice extent values were interpolated to a361

10’ grid.362

For land and snow surfaces, monthly updated VIS overhead-363

sun clear-sky albedos364

αcso1(λ, φ) = αcs1(λ, φ;µo = 1) (1)

were derived on a 10’ grid from VIRS and MODIS 0.64-µm365

data along with overhead-sun NIR surface albedos αsi(λ, φ;366

µo = 1) for channels 2 and 7 from VIRS and Terra MODIS367

1.64-µm data and from the MODIS 2.13-µm data using clear-368

sky values from earlier versions of the CERES processing369

system [15], [31], [32]. The latitude and longitude are indicated370

by λ and φ, respectively, whereas µo = cos(SZA) and SZA is371

the solar zenith angle. These albedos are used with angular372

directional models and, for the NIR channels, with approxi-373

mations for atmospheric absorption to estimate the clear-sky374

reflectance for a given scene. From the overhead-sun albedos,375

the VIS clear-sky albedo is estimated at a given SZA for any376

10’ region as377

αcs1(λ, φ;µo) = δcs1 (K(λ, φ);µo)αcso1(λ, φ) (2)

where δcs1 is a normalized directional reflectance model that 378

predicts the variation of the clear-sky albedo with SZA for 379

a given surface type K, which is one of the 19 modified 380

International Geosphere Biosphere Program (IGBP) surface 381

types [33]. Similarly, the NIR surface albedo at a given SZA 382

for any 10’ region is estimated as 383

αsi(λ, φ;µo) = δsi (K(λ, φ);µo)αsoi(λ, φ) (3)

where i indicates either channels 2 or 7 and the subscript 384

o denotes overhead sun conditions. Values of the directional 385

reflectance models and their derivation can be found in 386

Sun-Mack et al. [15], [31] for all surfaces except snow and 387

water, where the updated model of Minnis and Harrison [34] 388

is employed. 389

The VIS clear-sky reflectance is estimated as 390

ρcs1(λ, φ;µo, µ, ψ) = αcs1χVIS(K;µo, µ, ψ) (4)

where χVIS is the VIS bidirectional reflectance distribution 391

function (BRDF), µ = cos(VZA), and ψ is the relative azimuth 392

angle. For the NIR channels 2 and 7, the predicted clear-sky 393

reflectance is 394

ρcsi = αsiχsi(K;µo, µ, ψ)ti (5)

where χsi is the NIR BRDF and ti is the combined trans- 395

mittance of the atmosphere to the downwelling and upwelling 396

beam for channel i [31]. The VIS BRDFs are taken from 397

Minnis and Harrison [34] for water surfaces (K = 17) and 398

from Suttles et al. [35] for land and coast (K = 1 − 14, 18, 19), 399

snow (K = 15), and desert (K = 16). The theoretical snow 400

BRDF described by Sun-Mack et al. [31] is employed for 401

the MODIS analyses. The VIS BRDF model of Minnis and 402

Harrison [34] was also used for the NIR channels over water 403

surfaces. BRDFs from Kriebel [36] were used for the NIR 404

channels over most land surfaces as described in [31], whereas 405

the broadband desert model of Suttles et al. [35] was used for 406

the NIR for deserts and the theoretical models described in [31] 407

were used for snow and ice surfaces. 408

Uncertainties were computed from the same database used 409

to determine the clear-sky and surface albedos [31]. Nominally, 410

the relative rms average σcs1(λ, φ,m) of the temporal and 411

spatial standard deviations of the mean 〈αcso1(λ, φ,m)〉 of 412

αcso1(λ, φ) were computed for each month m using daily 413

pixel-level data from the earlier editions of the VIRS and 414

Terra MODIS analyses. These values were normalized to 415

〈αcso1(λ, φ,m)〉 to obtain the basic uncertainty in the monthly 416

mean overhead sun albedos. The resulting uncertainties were 417

filtered to eliminate values from poorly sampled areas where 418

mostly cloudy conditions prevailed during the month. The 419

filtered data were then averaged for each surface type to obtain 420

〈αcso1(K,m)〉 and σcs1(K,m). These surface-type averages 421

were then used to fill in uncertainty values for each region of 422

the given surface type that had no results for the month. When 423

the final edition processing took place, these uncertainties were 424

replaced with default values whenever the nominal value was 425

less than the default value. A similar process was used for 426

channels 2 and 7. It is recognized that, although high-resolution 427
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Fig. 3. CERES Terra MODIS clear radiation parameters for January 2001 mean (a) VIS clear-sky overhead-sun albedo, (b) 1.62-µm overhead-sun surface 4/C
albedo, (c) 3.79-µm surface emissivity, and (d) 10.8-µm surface emissivity.

surface albedo data are now available from the MODIS Land428

Surface science team [37], [38], they were unavailable when429

these CERES algorithms were developed and applied to the430

initial VIRS and MODIS data sets. Use of those surface albedos431

in future CERES editions will be considered but will require432

substantial modifications to the CERES algorithms.433

Spectral surface emissivities εSi(K,λ, φ) at the 10’ are used434

in conjunction with the reanalysis skin temperatures to estimate435

the clear-sky radiances for the CERES reference channels,436

i = 3, 6, where the wavelengths are listed in Table I. The437

CERES surface emissivity values are taken from the monthly438

averages of Chen et al. [39], [40]. Other global surface emis-439

sivity data sets (MOD11, MYD11) have become available440

from the MODIS Land Surface science team [41], [42] since441

CERES processing began. Although analyses using early ver-442

sions of MOD11 [41] yielded predictions of spectral clear-sky443

temperatures that are as accurate as those derived using the444

CERES emissivities [40], the later versions [42] may yet offer445

improvements for future CERES editions. For ocean surfaces,446

εS4 and εS5 are set to unity because it was found that they447

provide better estimates of the observed clear-sky radiance than448

the model values used by Chen et al. [40]. During daytime, 449

solar radiation in the SIR channel is reflected by the surface in 450

addition to the thermal emission from the surface. To account 451

for this reflected contribution, the SIR or channel-3 surface 452

reflectance is estimated as 453

ρcs3 = (1 − εS3)χs7(K;µo, µ, ψ)t3. (6)

The BRDFs used for the 2.13-µm channel are also used for 454

channel 3 because of the lack of bidirectional reflectance 455

measurements at the SIR wavelengths. An exception is the 456

theoretical 3.8-µm snow reflectance model [31], which is used 457

here for all snow and ice surfaces. 458

Fig. 3 shows an example of the global maps of monthly 459

mean surface emissivities and overhead-sun albedos for Terra 460

MODIS. Note that areas with permanent snow or ice cover or 461

having seasonally persistent snow cover are given albedos for 462

snow-covered scenes. Where the snow cover is highly variable, 463

the albedos are initialized with the snow-free value and can vary 464

during a given month. Fig. 3(a) shows that some areas with 465

seasonal snow cover have the average snow albedos, whereas 466
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other areas that are typically snow covered during January have467

the snow-free albedos. In practice, these snow-free albedos are468

overwritten during processing with the model snow albedos469

from the model whenever the ice–snow map indicates snow470

cover for the area. Variations in the emissivity and albedo pat-471

terns are generally related. The desert VIS albedos [Fig. 3(a)]472

are typically higher than those for no-snow surfaces but are473

less than their 1.64-µm counterparts [Fig. 3(b)]. The surface474

emissivities decrease with increasing VIS albedo, except over475

snow-covered regions. Surface emissivity at 3.8 µm [Fig. 3(c)]476

is typically less than that at 10.8 µm [Fig. 3(d)]. A few εS3477

values over the western Sahara are as low as 0.60 compared478

to 0.92 for εS4, which are the smallest values at 10.8 µm.479

The average value of εS3 for the barren surfaces, 0.77, is480

smaller than the value of 0.88 from the MOD11 data [41],481

but comparable to the value of 0.76 determined from Meteosat482

measurements [42]. Except for some extreme values like those483

just noted, the CERES surface emissivity values are similar to484

those derived from other algorithms and data sets.485

C. Fixed Ancillary Data486

Average land elevation was determined for each 10’ region487

from the 1-km United States Geophysical Survey (USGS)488

GTOPO30 data set (http://edc.usgs.gov/products/elevation/489

gtopo30/ gtopo30.html). The surface type for a given 10’490

region is taken from the modified IGBP map described by491

Sun-Mack et al. [31]. The percentage of water surface in a given492

10’ region was determined from the 1-km IGBP data set.493

III. METHODOLOGIES494

The CERES scene classification is one of the two main495

parts of the CERES cloud processing system, which is shown496

schematically in Fig. 4. To define a pixel as cloudy or clear497

(cloud mask), the system ingests the radiance and ancillary498

data described earlier on a pixel tile basis. Each tile consists499

of an array of pixels defined by 8 scan lines and 16 elements.500

For VIRS and MODIS, these arrays nominally correspond to501

16 km × 32 km and 32 km × 32 km, respectively. Although502

each pixel is analyzed individually, all pixels within a given503

tile use the same predicted clear radiances and atmospheric504

corrections in the retrieval. After ingesting the input data, the505

expected clear-sky radiances and clear-cloudy thresholds for the506

tile are computed for each channel, and the observed radiances507

are compared to the thresholds to determine if each pixel within508

the tile is clear or cloudy. If cloudy, the pixel is passed to the509

retrieval subsystem (shaded boxes) where cloud properties are510

determined. If no valid results can be obtained, the pixel is511

given a no-retrieval classification and tested within that system512

to determine if it warrants a clear classification. If categorized513

as clear in the original mask, the pixels may be used to update514

the clear radiance map for a given 10’ region and then are515

passed into the cloud property retrieval subsystem along with516

any cloudy pixels from the same tile. The predicted clear-sky517

radiances for the tile are also passed into the retrieval subsys-518

tem. These processes are described in detail in the succeeding519

discussions.520

Fig. 4. Schematic diagram of CERES cloud processing system. Unshaded
areas correspond to the scene identification process.

A. Clear-Sky Radiance Prediction 521

To compute expected clear-sky radiances, the surface emis- 522

sivities, skin temperatures, atmospheric profiles, and albedos 523

must be defined for the tile. To define the tile skin temperatures 524

and atmospheric profiles of temperature and humidity, the code 525

determines which 0.5◦ or 1◦ NWA grid box has its center closest 526

to the tile center. The six-hourly profiles and three-hourly skin 527

temperatures for that box are then linearly interpolated to the 528

time of the satellite measurement to provide input for the clear- 529

sky radiance and atmospheric correction calculations. Average 530

clear-sky VIS albedos, NIR surface albedos, surface elevation, 531

surface emissivities, water percentage, snow coverage, and 532

albedo-weighted BRDF factors are computed using values of 533

each parameter for all 10’ regions with centers that fall within 534

the perimeter of the tile. The dominant surface type is also 535

identified. Similarly, the largest average 10’ rms uncertainty in 536

the box is identified for each channel. Unless otherwise noted, 537

these average values are used hereafter in the discussion of the 538

clear-sky radiance prediction or mask analyses. 539

1) VIS and NIR: The channel-1 and NIR clear-sky reflec 540

tances for each pixel are computed as in (4) and (5), respec- 541

tively, using the values for χ and α corresponding to the 10’ 542

region containing the given pixel. No atmospheric corrections 543

are applied to the VIS reflectances. The atmospheric transmit- 544

tance for 1.62-µm channel is estimated as 545

t2 = exp [−τ2(1/µo + 2.04)] (7)

where τ2 is the effective water vapor optical depth parameter- 546

ized as a function of column precipitable water based on fits to 547

adding–doubling radiative transfer computations. 548

2) SIR: The SIR radiance leaving the surface is approxi- 549

mated as 550

B3(Ts3) = ε3 [B3(Tskin)] + α3 (La3 + χ3S
′
3) (8)



IE
EE

Pr
oo

f

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

where B3 is the Planck function evaluated at the energy-551

equivalent wavelength of the channel-3 band, Ts3 is the appar-552

ent surface temperature at 3.8 µm, La3 is atmosphere-emitted553

downwelling radiance, and S′
3 is the solar radiance incident at554

the surface. The SIR surface albedo is estimated as555

α3 = 1 − ε3. (9)

The incident solar radiation at the surface is computed as556

S ′
3 = µo

5∑

m=1

Som∆λm

1∏

n=19

td3mn (10)

where Som is the TOA solar radiance for wavelength interval557

m, where m denotes the 0.1-µm-wide subbands 1–5 for the558

SIR channel between 3.55 and 4.05 µm. The transmittances559

for each layer n to downwelling radiation td3mn are computed560

using the correlated k-distribution method [44] and the same561

coefficients employed by Minnis et al. [18]. These coefficients562

include N2O absorption, which was not in the original set563

of coefficients [44]. The value of La3 is estimated as the564

integral of the radiation emitted by each layer transmitted to the565

surface over all five subbands. Those calculations use the tem-566

perature and humidity profiles from the NWA interpolations.567

Those profiles are sometimes adjusted with the technique of568

Rose et al. [45] to ensure consistency between the observed and569

computed radiances. It is assumed that the surface emissivity is570

constant across all five subbands.571

The upwelling SIR radiance at the surface B3(Ts3) is then572

corrected for attenuation by the atmosphere to predict the clear-573

sky temperature Tcs3. Different sets of transmittances are com-574

puted for the upwelling radiation as a function of the pressure575

at the radiating surface to account for band saturation. This576

approach yields a mean difference between the observed and577

predicted values of Tcs3 of −2 K–+2 K and −1 K–+1 K during578

daytime and nighttime, respectively, with standard deviations579

σ3 less than 3 K and 2 K. The channel-3 clear-sky temperature580

uncertainties are estimated as the standard deviations between581

the predicted and observed temperatures with minima of 2.5 K582

and 3.0 K for ocean and land, respectively.583

3) IR: The 10.8- and 12.0-µm TOA clear-sky temperatures,584

Tcs4 and Tcs5, respectively, are derived in a manner similar585

to that for channel 3, except without the solar radiance con-586

tributions. The radiance leaving the surface is computed as in587

(8), except that the solar term is zero and the subscripts are588

replaced by 4 and 5 for 10.8 and 12.0 µm, respectively. These589

values are then adjusted to the TOA by accounting for gaseous590

absorption and emission of the atmosphere using the appro-591

priate correlated k-distribution coefficients [18]. Channel-4592

clear-sky temperature uncertainties are estimated as the stan-593

dard deviations between the predicted and observed temper-594

atures with minima of 2.5 K and 3.0 K for ocean and land,595

respectively. The nominal 10.8-µm uncertainty, σ′
cs4(λ, φ,m),596

is given in kelvins and is adjusted as a function of VZA to597

account for increases in apparent optical depth with rising VZA.598

The resulting uncertainty used in the clear-sky threshold is599

σcs4(λ, φ,m) = σ′
cs4(λ, φ,m) + delT(µ) (11)

where delT(µ) = 0 if µ = 1 or if µ < 1 600

delT(µ) = 4.11 − 7.69µ + 3.57µ2. (12)

To ensure consistency between using the ECMWF for VIRS 601

and GEOS for MODIS analyses, six days of 2001 Terra 602

MODIS data from the four seasons were analyzed separately 603

using ECMWF and GEOS profiles as input. In general, it 604

was found that cloud amounts derived using GEOS as input 605

differed by less than ±0.006, on average, compared to those 606

based on the ECMWF data. At night, however, the land skin 607

temperatures were greater than those from ECMWF, result- 608

ing in an overestimate of cloudiness at night. Fig. 5 shows 609

an example of the differences between the predicted clear- 610

sky temperatures from ECMWF and GEOS and the observed 611

10.8-µm brightness temperatures and the ensuing cloud mask 612

for an area in southern Asia for Terra MODIS data taken at 613

1650 UTC on January 3, 2001. The GEOS 4.03 predicted values 614

[Fig. 5(b)] are more than 7.5 K greater than the observed values 615

over central India compared to ECMWF [Fig. 5(a)], which has 616

maximum differences of less than 5 K in that same area. The 617

result is false cloud detection using GEOS 4.03 [Fig. 5(d)] for 618

that area compared to the minimal detection of clouds there 619

when ECMWF temperatures are used [Fig. 5(c)]. Globally, no 620

changes were made to the thresholds over ocean and daytime 621

land. At night, the IR thresholds were increased by 30% over 622

land to minimize the effects of differences in skin temperature 623

between ECMWF and GEOS 4.03. 624

B. Nonpolar Scene Identification 625

The CERES cloud mask consists primarily of cascading 626

threshold tests. To define a pixel as cloudy, at least, one of 627

its five spectral radiances must differ significantly from the 628

corresponding expected clear-sky radiances. A cloudy pixel 629

may be classified as good or weak depending on how much the 630

radiances differ from the predicted clear-sky radiances. Pixels 631

identified as clear are designated as weak or good or categorized 632

as being filled with smoke, fire, or aerosol, contaminated by 633

sunglint, or covered with snow. These qualifiers for the basic 634

classifications provide information for assessing the certainty of 635

the retrieval or for explaining why the classification may differ 636

from expected values. For VIRS, the daytime (SZA < 82◦) 637

masking algorithm can use all five channels, whereas the night- 638

time technique only employs channels 3, 4, and 5. A few extra 639

channels are used for the MODIS processing (see Table I). 640

Polar regions are defined as all areas poleward of 60◦ latitude 641

and all areas between 50◦ and 60◦ latitude where the snow–ice 642

maps indicate that the surface is covered with snow or ice. The 643

nonpolar masks apply to all other areas. Although the cascade 644

logic and some of the tests to discriminate clear from cloudy 645

pixels are different, much of the theoretical basis and details of 646

some tests are given by Baum et al. [46]. 647

1) Daytime: Every nonpolar pixel is classified during day- 648

light using a sequence of tests as shown in Fig. 6. The first 649

check, or A test, identifies all pixels that are obviously too 650

cold to be cloud free. If T4 < Tlim, then the pixel is designated 651

a good cloud. For VIRS Ed2, this test was called without 652
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Fig. 5. Comparison of nighttime cloud mask for Terra MODIS over southern Asia 1630 UTC, January 3, 2001. Differences between observed and predicted 4/C
clear-sky IR brightness temperatures: (a) ECMWF and (b) GEOS 4.03. Cloud mask using (c) ECMWF and (d) GEOS 4.03 skin temperatures. Black areas are
off scale. Note that the more apparent blockiness in the GEOS temperature differences results from the GEOS lower (1◦) spatial resolution relative to the 0.5◦

ECMWF resolution.

restrictions, and the value of Tlim is equal to the temperature653

at 500 hPa over land or to 260 K over ocean. In the MODIS654

processing, the test is not used if Tskin < 270 K or the surface655

elevation exceeds 4 km.656

If the pixel is not cloudy after the A test, it is then compared657

against the expected clear-sky radiances in the following B658

tests, where the parameters B1, B2, and B3 are initialized659

to zero:660

If T4 < Tcs4 − σcs4 B1 = 1 (13a)

If ρ1 > ρcs1(1 + σcs1) B2 = 1 (13b)

If BTD34 > BTDcs34 + σcs34 B3 = 1. (13c)

In these equations, the subscript numbers refer to channel661

number, and the subscript cs denotes the predicted clear-sky662

value. When two channels are indicated, the parameter is either663

the ratio of or the difference between the two channels, e.g.,664

BTD34 is the observed BTD between channels 3 and 4. If the665

sum of the B parameters is zero or three, then the pixel is666

initially identified as good clear or cloudy. If certain conditions667

are met, the pixel may be reclassified after passing through668

a set of ALL B clear or cloudy tests shown in Fig. 6. The669

former checks spectral consistency in glint-free or sunglint670

conditions over ocean using sunglint probability (SGP) or tests671

for shadows over land [Fig. 7(a)], whereas the latter checks for 672

other effects on the assumed thresholds as a result of sunglint 673

or highly reflective desert surfaces [Fig. 7(b)]. These ALL B 674

tests use a variety of parameters including observed reflectance 675

ratios Rij = ρi/ρj and constraint reflectance ratios rij , where 676

i and j are channel numbers. The constraints are defined for 677

sunglint, indicated with the subscript g, and other conditions 678

are denoted by the subscript c. For Aqua, channel 7 is used 679

instead of channel 2. These defining reflectance ratio values are 680

listed in Table III. The initial B result is the final classification 681

unless the ALL B tests change it. If the sum of the B parameters 682

is either one or two (Fig. 6), then a thin cirrus test is applied 683

(Aqua Ed1 only) followed by one of six sets of C tests that 684

depends on which B tests failed and on the surface type. The 685

Aqua thin cirrus tests, shown in Fig. 8, were developed after 686

visual examination of the Terra Ed2 results revealed that thin 687

cirrus clouds were being missed in some instances when they 688

should have been detected. These tests utilize the 1.38-µm 689

reflectance ρ8 and the 8.55-µm brightness temperature in the 690

form of BTD64, as well as BTD45. Several constraint parame- 691

ters are used that depend on the precipitable water vapor, which 692

is indicated by the subscript PW. A cruder version of the thin 693

cirrus test was applied in some of the C tests for all satellites. 694

The C tests adjust the clear-sky uncertainties and may also 695

involve channels 2 or 5 in addition to the three channels used 696
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Fig. 6. Outline of daytime scene identification process. Shading indicates use
in Aqua Ed1a only.AQ5

in the B tests. For example, if the scene is bright and cold697

over land, the C test will check for snow using the expected698

snow reflectance ratio R21 of 1.6–0.64 µm. From these C699

tests, a pixel categorized as clear may be assigned additional700

classifiers such as good, weak, snow, aerosol, smoke, fire, or701

glint. Cloudy pixels may be classified as good, weak, or glint.702

Fig. 9 shows one of the six C tests, C1, which is called when703

the IR test fails (B1 = 0). Over land [Fig. 9(a)], the VIS and704

BTD34 thresholds are relaxed by a factor of two and by a705

variable relaxation factor fr, respectively. The value of fr is706

2.0 for desert areas and 1.5 for vegetated land areas. If both tests707

are passed, the results are tested for snow using a temperature708

and reflectance ratio tests. If positive snow does not result, the709

pixel is classified as weak or good cloud depending on the710

temperature and the reflectance ratio R21. If only the VIS test is711

passed, the radiances are tested for snow. If no snow, then a test712

for smoke is applied by further increasing the VIS threshold.713

If no smoke is detected, then the pixel is classified as weak or714

good cloud. Similarly, if only the BTD34 test is passed, then715

the cloud is classified as weak or good depending on R21. If716

both tests fail, then the radiances are examined to determine717

if the pixel should be classified as clear good, weak, smoke,718

or fire.719

Over ocean [Fig. 9(b)], the SGP is tested to determine if there720

is any likelihood of sunglint affecting the clear reflectances. If721

SGP exceeds 40%, then the sunglint tests shown in Fig. 10 are722

applied. The clear sunglint tests rely on the spectral reflectance723

ratio R31, the VIS reflectance, and the IR or SIR tempera-724

tures. The cloud tests depend on T4 and BTD34. The latter is725

compared to the sum of two uncertainties: the BTD34 sunglint 726

uncertainty 727

σcs34g = 4.316 K + 0.123 K SGP (14)

and the nighttime high-cloud BTD34 uncertainty σcs34hi. The 728

latter is simply the daytime uncertainty with the reflectance 729

components removed. If the sunglint tests fail for the strong 730

sunglint cases [Fig. 9(b)], then a final test is applied using two 731

spectral reflectance ratios. When SGP falls between 2% and 732

40%, moderate sunglint tests are invoked using looser BTD34 733

and VIS reflectance uncertainties. Again, spectral reflectance 734

ratios are used to determine a classification. For nonglint cases, 735

SGP < 2%, a set of tests is applied to determine if aerosols 736

can be causing the enhanced reflectances. Reflectance ratios T4 737

and an enhanced BTD34 uncertainty are used to detect aerosols. 738

If the aerosol tests are not passed, then the thresholds for VIS 739

and BTD34 are enhanced and applied in fashion similar to that 740

for the land cases. The pixel is good cloud only if both tests 741

are passed. Because of the obvious complexity of the C tests 742

and the number of required diagrams, only C1 is illustrated 743

here. More details, as well as the flowcharts for the remaining 744

five C tests (C2–C6), are provided elsewhere (http://www- 745

angler.larc.nasa.gov /CERES_algorithms/). 746

An example of predicting the clear-sky VIS reflectances for 747

the daytime mask is shown in Fig. 11 for data taken around 748

17 UTC on December 21, 2000 over the southwestern USA 749

and northern Mexico. The three-channel Terra MODIS image 750

[Fig. 11(a)] shows green and bluish areas that are clear land and 751

desert. Dark areas are clear water, whereas white, gray, pink, 752

and yellow areas correspond to clouds. The bright magenta 753

areas are covered with snow. Some of the input data, such as 754

radiances, water percentage, snow/ice, and clear-sky overhead 755

albedo, are shown in Fig. 11(a)–(d), respectively. The computed 756

directional reflectance model values [Fig. 11(e)] applied to the 757

overhead-sun albedos yield the clear-sky albedos at the image 758

time [Fig. 11(f)]. These are multiplied by the BRDF factors 759

[Fig. 11(g)] to obtain the predicted clear-sky VIS reflectances 760

[Fig. 11(h)]. When compared to the observed VIS reflectance in 761

Fig. 11(i), it is apparent that in areas where it is visually cloudy 762

or snow free, ρcs1 is reasonably close to the observed value. 763

The corresponding processes for estimating Tcs4 and 764

BTDcs34 are shown in Fig. 12. The MOA skin temperatures 765

[Fig. 12(b)] are given at the 1◦ scale and used with the MOA 766

temperature and humidity profiles (PW in Fig. 12(c) illus- 767

trates the variability in humidity) and the surface emissivities 768

[Fig. 12(d) and (g)] taken from maps like those in Fig. 4(c) 769

and (d) to compute the clear-sky brightness temperatures. The 770

values of Tcs4 in Fig. 12(e) were computed at the tile scale and 771

tend to be less than the observed values [Fig. 12(f)] over land 772

and slightly higher over water. This difference can mostly be 773

attributed to the MOA skin temperatures since they are typically 774

less than the observed clear-sky temperatures even before the 775

surface emissivity and atmospheric corrections reduce Tskin to 776

Tcs4. The values of BTD34 [Fig. 12(h)] are greater than the 777

observed values [Fig. 12(i)] in some clear areas and less than 778

the values in other areas. The observations do not show the 779

same degree of VZA dependence over water that is predicted. 780
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Fig. 7. Final classification for certain pixels classified as (a) clear or (b) cloudy after all of the B tests. If the specified conditions are met, the pixel is reclassified.
SGP refers to sunglint probability.

TABLE III
CONSTRAINT VALUES FOR REFLECTANCE RATIO TESTS

Fig. 8. Thin cirrus tests used for Aqua Ed1a processing after B tests are
applied.

Using these clear-sky values in the daytime cloud mask781

yields the results shown in Fig. 13. The ABC summary782

[Fig. 13(a)] shows examples of the various tests that were used783

to classify the clouds. While a few snow-covered regions are 784

shown in yellow because the pixels passed B1 and B2, most 785

are blue having passed only B2 because Tcs4 is less than T4 786

[Fig. 12(e)–(f)]. A large part of the desert and shadowed areas 787

passed B1 but failed the other two. Only a few areas of high 788

clouds passed the A test (white), whereas many of the clouds 789

over the Rocky Mountains and the Gulf of Mexico passed all 790

three B tests (gray). The other colors indicate the final tests used 791

to classify the pixels. 792

The cloudy pixels [Fig. 13(b)] are identified as good (white), 793

weak (pink), or no retrieval (blue). The last category indi- 794

cates that those pixels that were identified as cloudy have 795

radiances that cannot produce solutions to the models used in 796

the cloud retrieval program [14], [47]. Typically, no-retrieval 797

cloudy pixels are reclassified as clear in the cloud retrieval 798

portion of the system using an additional mask developed by 799

Welch et al. [48]. The clouds over the snowy areas and over the 800

southeastern part of the image appear to be properly classified 801

when compared with the composite image in Fig. 12(a). The 802

cloudy areas over northeastern Mexico, southern Texas, and 803

near the Arizona–New Mexico border are difficult to see in 804

Fig. 12(a), but they appear as relatively cold areas in Fig. 12(f) 805

and as warmer areas (larger BTD34) in Fig. 12(i). Those char- 806

acteristics are typical of thin cirrus clouds. Weak clouds are 807

detected near the thin cirrus clouds and over the Pacific and 808

Sea of Cortez where the clouds are very faint in the image. 809

The no-retrieval pixels occur along the edges of the snowy 810

areas and the thin cirrus regions. Although some likely clear 811

pixels along the snow edges are misclassified as good clouds, 812
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Fig. 9. (a) Daytime, C1 test over land. B1 = 0, B2 = 1, and B3 = 1. The relaxation factor fr is 2.0 for desert and 1.5 for nondesert land. Parameters shown
in italics indicate tests only used by Aqua Ed1. The Tskin test for b = 1 and c = 1 is only used for Terra Ed2. The free-floating tests are applied only to certain
surface types after the C1 tests are completed. (b) Same as (a), except over ocean.
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Fig. 10. Ocean sunglint tests. Italics denote tests only used for Aqua Ed1.

overall, the mask [Fig. 13(c)] appears to correctly identify most813

pixels.814

The resulting clear pixels [Fig. 13(d)] are classified as weak815

(light green), good (dark green), aerosol (pink), and snow816

(white). The gray areas correspond to clouds. The clear areas817

are mostly good. Some shadowed pixels are identified over818

Louisiana (center right) next to the cloud edges. The snow-819

covered areas correspond roughly to those in the snow map820

[Fig. 11(b)], but some additional areas are added east of the821

western section and around the northwestern and southern822

edges of the eastern section. Much additional detail is resolved823

relative to the snow-map snow areas, and some snowy parts in824

Fig. 11(b) are reclassified as good clear, e.g., the region in the825

northwest corner of the image.826

2) Nighttime: The nighttime mask is similar to the daytime827

cascade of tests. The A test (Fig. 14) is followed by D tests828

that begin with D1 = D2 = D3 = 0. The D1 and D2 tests are829

the same as B1 and B3, respectively. The threshold for the830

D2 test, however, uses the nighttime threshold for high clouds831

BTDcs34hi. Because low clouds are often indistinguishable832

from clear skies at night in channel 4 and BTD34 is often833

negative [49], the D3 test is used to detect low clouds by834

checking for smaller-than-expected values of BTD34. In this835

test, BTD34 − BTDcs34 is compared to σcs34lo, which is equal836

to 0.5 − BTDcs34hi. If any of the D tests passes, then one837

of the five E tests is applied that involves refined thresholds838

and channel-5 radiances. Otherwise, the pixel is passed on to839

the ALL D clear tests that are applied only in the twilight840

zone, the sunlit portion near the terminator, which is defined841

as the area where 82◦ < SZA < 87.5◦. At these high SZA’s,842

the reflectance component in channel 3 is often just large843

enough to offset the negative BTD34 seen for low clouds at844

night, but is not sufficient to produce a strongly positive value845

typical of low clouds during the daytime. Thus, the additional846

tests, shown in Fig. 15, are invoked. Over ocean, VIS and847

NIR reflectances that are both significantly greater than the848

predicted clear sky values will cause the pixel to be reclassified 849

as weak cloud. To be recategorized as weak cloud over land, the 850

observed reflectances must both exceed 0.20, and the BTD34 851

must be outside of the range between −1 K and 4 K. If no 852

reclassification occurs, the pixel remains as good clear. Similar 853

to the daytime C tests, the E tests, applied to the remaining 854

pixels, change the uncertainties to yield good or weak clear or 855

good or weak cloudy classifications. 856

Fig. 16 shows the outline of the E3 test, which is in- 857

voked when D2 is passed. That is, T4 is higher than ex- 858

pected and BTD34 is greater than the expected clear-sky value. 859

The channel-4 and BTD34 uncertainties are decreased and 860

increased, respectively. If the observations pass both tests, then 861

the pixel is a good cloud over ocean but undergoes one more 862

test, using BTD45, over land to see if thin cirrus caused the 863

greater-than-expected BTD34 value. If only one of the two E3 864

tests passes, then, over ocean, the pixel is a weak cloud if the 865

channel-4 test passes and weak clear if BTD34 test passes. For 866

land scenes, the thin cirrus (Ci) test is applied. This test classi- 867

fies a pixel as thin cirrus if BTD45 exceeds threshold values that 868

depend on VZA and T4. The threshold values were originally 869

developed by Saunders and Kriebel [50]. The bases for the test 870

and the threshold values are discussed by Baum et al. [46]. 871

If neither E1 test is passed, the Ci test is applied regardless 872

of surface type. As in the case of the C tests, only one example 873

of the E tests is shown here for brevity. The details of the re- 874

maining E tests, E2–E5, can be found elsewhere (http://www- 875

angler.larc.nasa.gov/CERES_algorithms/). 876

Fig. 17 shows the results of applying this classification 877

scheme to VIRS data taken over Texas at 6 UTC on March 878

25, 2001. The three-channel IR pseudocolor image [Fig. 17(a)] 879

renders clear areas in blues and tans and cloudy pixels in colors 880

ranging from gold to white. The 3.7-µm surface emissivity 881

[Fig. 17(g)] is generally defined only at the 0.5◦ scale, although 882

some 10’ regional variability is evident. It tends to increase 883

from the forested eastern areas to the high plains in the west. 884

Fig. 17(e) shows the BTD34 values ranging from less than 885

−5 K to more than 20 K. The negative values generally 886

correspond to low clouds, whereas the greater positive values 887

are associated with thin high clouds. Clear areas typically 888

have values near zero. Observed BTD45 values are given in 889

Fig. 17(f), where low clouds and clear areas have values of 890

+1 K and high clouds have positive values of up to 4 K or 891

greater. The low clouds also tend to have 11-µm temperatures 892

comparable to the clear areas [Fig. 17(d)]. The resulting cloud 893

mask and summary of nighttime tests are shown in Fig. 17(b) 894

and (c), respectively. The A test (white in summary) and the 895

E1 test (light blue) pick up many of the thick and thin high 896

clouds. The E3 test (red) detects many of the thinnest cirrus 897

clouds, particularly those around the edges of those detected 898

by the E1 test. Thicker midlevel and cirrus clouds over low 899

clouds are found using the E5 test. In those instances, the 900

BTD34 values are similar to the expected clear temperature 901

differences. Very low or subinversion clouds were classified 902

with the E2 and E4 tests. The ALL D clear category is 903

indicated in green. Other clear areas were classified with the 904

E tests. In some instances, it appears that cloudy pixels were 905

misclassified as clear. These were mainly low clouds that 906
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Fig. 11. Terra MODIS image and VIS reflectance and mask input and clear-sky VIS parameters, 1700 UTC, December 21, 2000. (a) RGB image, (b) water4/C
percentage map, (c) snow–ice map, (d) overhead-sun clear-sky albedo, (e) normalized directional reflectance, (f) clear-sky albedo, (g) BRDF factor, (h) predicted
clear-sky reflectance, and (i) observed reflectance.

were warm and had BTD34 values close to the expected clear907

levels. They can be seen by comparing the areas where E tests908

were applied with cloudy areas in the CERES mask image.909

Visually, the results are quite reasonable despite a few missed910

clouds.911

IV. RESULTS AND DISCUSSION912

As noted earlier, the CERES nonpolar scene identification913

mask was applied to several years of VIRS data and, along with914

the CERES polar mask [13], [51], to long periods of Terra and915

Aqua MODIS data. A few examples summarizing the results916

are presented and discussed here.917

A. Scene Identification Statistics 918

Tables IV and V summarize, for day and night, respectively, 919

the relative frequency of the various tests that resulted in a final 920

classification for all of the nonpolar Terra MODIS pixels on 921

March 2000. During daytime (Table IV), the A test accounts 922

for nearly 43% of the decisions; more occur over ocean than 923

over land and desert surfaces. The All B tests result in a 924

classification for almost 40% of the pixels, leaving only 20% 925

to be categorized by the C tests. The All B clear classification 926

is most common over desert areas, whereas All B clouds occur 927

most frequently over ocean. The channels that are used in each 928

C test are noted in the first column of Table IV. The C5 test, 929

in which only the IR channel indicates clouds, is invoked least 930

often of all of the C tests. Bad data are those pixels having 931



IE
EE

Pr
oo

f

MINNIS et al.: CLOUD DETECTION IN NONPOLAR REGIONS FOR CERES 15

Fig. 12. Terra MODIS image, IR temperature, and BTD and mask input and predicted clear-sky IR and BTD parameters, 1700 UTC, December 21, 2000.4/C
(a) RGB image, (b) MOA skin temperature, (c) MOA precipitable water vapor in centimeters, (d) IR surface emissivity, (e) predicted clear-sky IR brightness
temperature Tcs4, (f) observed IR brightness temperature, (g) 3.8-µm surface emissivity, (h) predicted clear-sky BTDcs34, and (i) observed BTD34.

out-of-range or saturated radiances in any of the channels used932

in the mask. They occur mostly over land and account for 1%933

of pixels overall.934

At night (Table V), the frequency of positive (cloudy) A935

tests is nearly the same as during the daytime, whereas the936

ALL D clear occurrences are slightly greater than their daytime937

ALL B counterparts. In contrast to daytime, the E5 test, which938

is enacted when only the IR threshold is exceeded, is used939

most often followed by the E1 and E4 tests. No bad data are940

seen in this nighttime data set, probably because most cases941

are due to extremely high temperatures or reflectances, which 942

do not occur at night. The day and night cloud mask test 943

statistics vary somewhat from month to month; however, the 944

results in Tables IV and V are fairly typical for both Terra 945

and Aqua. The number of positive A tests decreases for VIRS 946

presumably because the proportion of colder clouds drops when 947

the midlatitudes are excluded from the data set. 948

Of the pixels initially classified as clear during daytime, 949

roughly 92% are classified as good clear, 4.6% as clear glint, 950

1.6% as clear snow, 1.4% as weak clear, and the remainder 951



IE
EE

Pr
oo

f

16 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 13. Pixel classification by CERES daytime nonpolar cloud mask for Terra MODIS image in Fig. 12(a), 1700 UTC, December 21, 2000. (a) Final tests used4/C
to classify each pixel, (b) cloud quality classification, (c) final cloud mask, and (d) final clear-sky classifications.

divided between weak clear, shadow, aerosol, and smoke. At952

night, approximately 80% of the pixels are good clear, 14%953

are weak clear, and 6% are clear snow. In daytime cloudy954

conditions, ∼92% of the pixels are good cloud while around955

3% are weak cloud, 1% are glint cloud, and 4% are classified956

as no retrieval. At night, roughly 98% are good clouds, 1.3%957

are weak clouds, and 0.5% are no retrievals, occurring mostly958

during twilight conditions. Roughly half of the no-retrieval959

pixels, which typically occur over bright surfaces like desert,960

snow, and glint, are reclassified as clear pixels in the retrieval961

subsystem. The Terra March 2000 statistics are typical for 962

all of the Terra and Aqua nonpolar scene classifications. The 963

number of no retrievals from VIRS is slightly smaller, around 964

3%, presumably because of fewer snowy and strong sunglint 965

conditions. 966

B. Cloud Amount Distributions and Consistency 967

The TRMM Ed2 and Terra Ed2 cloud amount distributions 968

for March 2000 are shown in Fig. 18. This month is shown 969
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Fig. 14. Schematic diagram of CERES nonpolar nighttime scene
identification.

Fig. 15. Flow diagram for twilight tests applied when nighttime mask iden-
tifies pixels as good clear and significant sunlight affects the SIR brightness
temperature.

because it is the only period when CERES broadband scan-970

ners operated on both TRMM and Terra. The cloud amounts971

include good, weak, and no-retrieval pixels. During daytime972

[Fig. 18(a)], the VIRS and MODIS results have similar patterns973

with some distinctive differences. For example, fewer clouds974

are detected by Terra over the Sahara and most land areas,975

whereas differences over ocean vary. Over the intertropical976

convergence zones, the VIRS cloud amounts are greater, but977

in the southern ocean subtropical subsidence areas, the VIRS978

cloud cover is slightly less. These discrepancies can arise from979

a number of factors such as differences in spectral and temporal980

and VZA sampling characteristics. Over the Tropics, VIRS981

samples nearly all local times during a given month, but has982

divergent sampling patterns in the subtropics and midlatitudes.983

On March 2000, most of the daytime samples near 32◦ N were984

taken in the hours just before sunset and after sunrise, whereas985

at the 32◦ S, VIRS sampled, on average, around 1300 LT.986

Terra MODIS viewed a given area in the VIRS domain within987

Fig. 16. Nighttime E1 test applied when D1 = 1, D2 = 1, and D3 = 0.

±1.5 h of 1030 LT at VZA < 70◦. Thus, from a sampling stand- 988

point, many of the daytime differences are reasonable. 989

Similar sampling differences might explain the differences 990

at night [Fig. 18(b)], except over the Sahara Desert where the 991

cloud amounts from VIRS greatly exceed those from Terra. 992

In this instance, the VIRS results are likely an overestimate 993

and may be due to the use of older emissivity maps based 994

on AVHRR data [39], to differences in the surface skin tem- 995

peratures between the ECMWF and GEOS4.03 analyses, or 996

to some slight differences in the Terra Ed2 and VIRS Ed2 997

nighttime masks. Several extra twilight tests and a BTD64 998

nighttime test were added for Terra Ed2. At night, the VIRS 999

analysis consistently detected many more clouds than Terra 1000

over the western Sahara during all months (not shown). The 1001

Terra processing produces an artifact, a discontinuity at 50◦ N, 1002

not seen in the VIRS, which only views to 38◦ N. It occurs 1003

because of an error in the Terra Ed2 polar mask and is discussed 1004

by Trepte et al. [13], [51]. 1005

Many of the latitudinal sampling inconsistencies are dimin- 1006

ished somewhat by averaging the VIRS results over periods 1007

of three months or so. Fig. 19 shows the combined cloud 1008

amounts derived from VIRS and Terra for summer 2000 (June, 1009

July, August; JJA), and winter 2000–2001 (December, January, 1010

February; DJF). During daytime [Fig. 19(a)], the VIRS zonal 1011

mean cloud amounts are systematically larger than those from 1012

Terra except south of 30◦ S. The VIRS and Terra cloud fractions 1013

are in closer agreement during the night [Fig. 19(b)] except 1014

over the northern subtropics, particularly at the latitudes (15◦ − 1015

32◦ N) corresponding to the Sahara Desert. It is clear that the 1016

main source of the discrepancy at those latitudes is due to 1017

the differences over land, which peak at 0.11 around 22.5◦ N 1018

[Fig. 19(c)]. Over ocean, the mean zonal differences (VIRS- 1019

MODIS) vary between −0.025 and 0.025. Overall, the zonal 1020

differences range from −0.03 to 0.05. Not all of the differences 1021

are due to changes between the VIRS and Terra processing 1022

in the numerical weather analyses, surface emissivities, and 1023

thresholds. The Terra orbit was selected to maximize clear- 1024

sky detection over land before land-surface heating causes the 1025

development of clouds and after early morning fog or stratus 1026

have dissipated. This fixed local-time sampling contrasts with 1027

the 24-h sampling by the TRMM VIRS. Thus, some of the 1028

pminnis
Cross-Out

pminnis
Inserted Text
 between the VIRS and Terra processing
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Fig. 17. CERES nocturnal cloud mask for VIRS data taken at 6 UTC on March 25, 2001 over Texas. 4/C

differences are caused by discrepancies in the local-time sam-1029

pling of the two satellites.1030

The relative sampling differences between Aqua and Terra1031

are a bit easier to understand since they are both polar orbiters1032

with fixed overpass times. The mean July 2004 daytime Aqua1033

and Terra cloud fractions and their differences are shown in 1034

Fig. 20. A cursory examination of the means [Fig. 20(a) and 1035

(b)] indicates that they are very similar. Dissimilarities stand out 1036

better in the difference plot [Fig. 20(c)] where light green and 1037

yellow indicate good agreement, blues show that Terra has more 1038
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TABLE IV
SUMMARY OF DAYTIME CLOUD MASK TESTS USED TO REACH

FINAL CLASSIFICATION OF ALL NONPOLAR PIXELS FOR

TERRA MODIS, MARCH 2000

TABLE V
SUMMARY OF NIGHTTIME CLOUD MASK TESTS USED TO REACH

FINAL CLASSIFICATION OF ALL NONPOLAR PIXELS FOR

TERRA MODIS, MARCH 2000

cloud cover, and reds and white correspond to greater Aqua1039

cloud amounts. Increased afternoon cloudiness is greatest over1040

elevated land areas, some coastal lands, and over the tropical1041

western Pacific. Greater midmorning (Terra) cloud cover is1042

apparent over the subtropical marine stratus regions, northwest1043

of Australia, and over the northern Amazon Basin. While the1044

cloud cover difference is relatively small over many areas,1045

overall for this month, it appears that cloudiness is greater1046

around 1330 LT than at 1030 LT.1047

Although the differences vary from month to month, the1048

mean 2005 cloud amounts (Fig. 21) reveal some significant1049

systematic zonal divergences. During the daytime [Fig. 21(a)],1050

more clouds are detected using the Aqua data over the Trop-1051

ics and northern midlatitudes. Fewer clouds are seen over1052

the southern midlatitudes. Relatively good agreement between1053

Terra and Aqua is seen in the polar regions, except at night1054

[Fig. 21(b)]. In other zones, the nighttime cloud cover from1055

Aqua tends to be the same or slightly less than that from1056

Terra. When all hours are combined [Fig. 21(c)], the differences1057

over nonpolar ocean range between −0.03 and 0.02, with the1058

largest differences occurring near the Equator and 40◦ S. Over1059

land, Aqua systematically yields more clouds, by up to 6%1060

at 12◦ S. The diurnal cycle in cloud cover over land is likely1061

responsible for much of the Aqua–Terra bias. The large relative1062

bias over the polar regions is primarily due to algorithm changes1063

between Terra and Aqua [13]. Otherwise, in nonpolar regions,1064

the CERES Terra and Aqua results are generally very consistent1065

given their sampling differences.1066

C. Comparisons With Other Cloud Amounts 1067

Fig. 22 shows the long-term zonal average cloud amounts 1068

from various sources including the ISCCP, MAST (MYD08 1069

and MOD08), the AVHRR Pathfinder Atmospheres Extended 1070

(PATMOS-x) cloud amount data set, surface observations [52], 1071

and the three CERES data sets discussed here. The PATMOS-x 1072

data set is based on a recently updated version of the algorithm 1073

summarized by Thomas et al. [53]. Averages from those data 1074

sets are listed in Table VI. Although different in magnitude, 1075

the relative zonal variations are all very similar except north of 1076

70◦ N, for all polar regions for PATMOS-x, and between 40◦ S 1077

and 70◦ S where the surface values are noisier, most likely as the 1078

result of sparse spatial sampling. In the Tropics, the PATMOS- 1079

x and MYD08 amounts are the greatest and the CERES Terra 1080

amounts are the least. The CERES values are generally closest 1081

to the historical surface averages except in the Arctic and near 1082

20◦ N. The ISCCP amounts fall between the surface and MAST 1083

results, except in the midlatitudes where they are the largest. 1084

Overall, the CERES cloud amounts differ from the MAST and 1085

ISCCP cloud amounts by 0.07 globally and between 60◦ N and 1086

60◦ S. The CERES cloud amounts are 0.05 and 0.07 less than 1087

the PATMOS-x cloud amounts globally and between 60◦ N and 1088

60◦ S, respectively. The average difference between the surface 1089

and CERES cloud amounts is between 0.00 and 0.01 (Table VI). 1090

Active sensors, including the Geoscience Laser Altimetry 1091

System (GLAS) on the Ice Cloud and Elevation Satellite and 1092

the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob- 1093

servations (CALIPSO) satellite, detect even more cloud cover 1094

than any of the passive sensors. The CERES global cloud 1095

fractions are 0.00–0.08 less than those from GLAS [54] and 1096

0.14 less than those from CALIPSO [55]. Direct comparisons 1097

with airborne [56] and surface-based lidar systems [57] re- 1098

vealed that the CERES algorithm fails to detect most clouds 1099

with optical depths smaller than 0.3. Very preliminary estimates 1100

from CALIPSO measurements indicate that the cloud amounts 1101

having optical depths less than 0.3 are slightly more than 0.19 1102

[Y. Hu, 2007, personal communication]. Nearly 70% of those 1103

thin clouds detected by CALIPSO have optical depths less than 1104

0.1. Thus, it is likely that the primary difference between the 1105

CERES and the CALIPSO and GLAS cloud retrievals is due 1106

to the inability of the CERES algorithms to detect clouds that 1107

have very low effective optical depths. These would include 1108

such clouds as thin cirrus that fills the imager pixel or small 1109

cumulus clouds that partially fill the pixel. The comparisons 1110

with the GLAS data reveal that some of the greatest differences 1111

with CERES occur in areas dominated by trade cumulus [54]. 1112

This could explain why the PATMOS-x cloud amounts, derived 1113

with most of the same channels used by CERES, are greatest in 1114

the Tropics. The updated PATMOS-x cloud mask algorithm has 1115

been tuned based on the high-resolution (250 m) MODIS pixels 1116

that can resolve many of the small clouds (A. Heidinger, 2008 1117

personal communication). The surface-based cloud amounts 1118

may be similar in magnitude to the CERES values because 1119

surface observers may not see the very thin clouds or may 1120

discount their contribution to sky cover. 1121

The large range in cloud cover derived from the same satellite 1122

data seen in Table VI, i.e., CERES and MAST, could be due 1123
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Fig. 18. (a) Mean CERES daytime cloud amount for March 2000 from (top) Terra MODIS and (bottom) TRMM VIRS. 4/C

to the sensitivity of the algorithms to cloud optical thickness.1124

This probable cause may be reflected in the relative number of1125

cloudy pixels having no retrievals of cloud properties. When1126

determining cloud properties, it becomes difficult to obtain a1127

valid retrieval for very low optical depths because the errors in1128

the input parameters often exceed the size of the cloud signal.1129

To avoid no retrievals, the ISCCP algorithm assigns to many of1130

those pixels a default minimum optical depth and a temperature1131

that is 5 K less than the tropopause temperature [58]. In addition1132

to having many thin cloud (optical depths less than 1.0) no1133

retrievals [56], [57], the MAST Collection-5 algorithm does1134

not attempt to retrieve cloud properties for pixels on the edges1135

of cloud decks where the retrieval may have a large uncer-1136

tainty [59].1137

To examine the impact of no retrievals on the cloud fraction1138

having cloud properties, the number of pixels identified as1139

cloudy by the MAST scene identification algorithm [6] and1140

the number of pixels having retrieved cloud properties [8] were1141

computed using the Collection-5 MOD06 product for daytime 1142

on July 30, 2005 to determine the fraction of no-retrieval 1143

cloudy pixels. It was found that no retrievals for the 3.7-µm 1144

retrieval—the MAST retrieval method having the greatest num- 1145

ber of retrievals—comprise nearly 20% of the nonpolar MAST 1146

Terra cloudy pixels compared to less than 4% of those from 1147

CERES. Assuming that the single day’s statistics are typical, 1148

the cloud fractions for nonpolar pixels having retrieved cloud 1149

properties are around 0.576 and 0.536 for CERES and MAST, 1150

respectively, whereas the ISCCP cloud fraction would be the 1151

same as that in Table VI because of the default value approach. 1152

Presumably, the differences between CERES and the MAST 1153

retrieved cloud fractions are due to edge pixels and optically 1154

thin clouds not retrieved by the MAST algorithms. For example, 1155

the MAST MOD06 cloud mask and retrieved optical depths 1156

are compared to their CERES counterparts in Fig. 23 for a 1157

Terra MODIS scene taken over Australia around 0100 UTC 1158

on July 30, 2005. The cloud masks are similar over ocean, 1159
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Fig. 18. (continued). (b). Same as (a), except for nighttime. 4/C

Fig. 19. Mean zonal cloud fraction and differences for summer 2000 (JJA) and winter 2001 (DJF). (a) Day. (b) Night. (c) 24 h.

but CERES [Fig. 23(b)] picks up a little more cloudiness than1160

MOD06 [Fig. 23(c)] around the edges of the systems over1161

land. The cloud cover with retrieved optical depths is further1162

reduced for the MOD06 cases as indicated by the areas with 1163

optical depth retrievals [Fig. 23(e)]. This is particularly notice- 1164

able over water where smaller clouds disappear and the clear 1165
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Fig. 20. Mean cloud fraction distributions and differences for July 2004. 4/C

areas along the cloud edges are increased. In most instances,1166

these removed pixels correspond to clouds identified as having1167

small optical depths (less than one) by CERES [Fig. 23(d)].1168

Since most of the clouds missed by CERES are very thin1169

optically, they should have minimal impact on the radiation 1170

field. If they were detected, it appears that it would be very 1171

difficult to retrieve the corresponding cloud properties with 1172

much certainty. Nevertheless, to fully account for the impact of 1173
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Fig. 21. Mean 2005 CERES zonal cloud fraction and difference. (a) Day. (b) Night. (c) All hours.

Fig. 22. Mean long-term zonal cloud amounts from several sources. The time periods and averages are listed in Table VI. 4/C

TABLE VI
MEAN CLOUD AMOUNTS FROM LONG-TERM MEASUREMENTS

all clouds, it would be necessary to make such retrievals or to 1174

estimate their properties in some fashion, e.g., as in the ISCCP 1175

algorithm. 1176

Other factors that affect cloud detectability include very 1177

high solar zenith angles (i.e., the twilight zone) and aerosols. 1178

When the aerosol optical depth is very large, as sometimes 1179

occurs during dust storms, the CERES nonpolar algorithm 1180

often misclassifies the heavy aerosol areas as cloudy. Be- 1181

cause dust aerosols often produce multispectral radiance com- 1182

binations that do not fit the model-computed radiances for 1183

clouds, some of those pixels end up as no retrievals while 1184
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Fig. 23. Image, cloud mask, and cloud optical depths. Numbers in (c) denote probability of being clear. From Terra MODIS, 0100 UTC, July 30, 2005. 4/C

others have abnormal cloud properties, a topic discussed in1185

[14] and [47]. The net impact of misclassified aerosols is a1186

slight increase in cloud cover. In the twilight near-terminator1187

zone, initial comparisons with CALIPSO data indicate that1188

the loss of the BTD34 signal for low clouds causes a slight 1189

net decrease in the cloud cover. Accurate quantification of the 1190

impacts of heavy aerosol loading and the poor BTD34 signal 1191

in near-terminator conditions will require detailed analyses of 1192
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coincident imager and active sensor lidar data (e.g., CALIPSO).1193

Such analyses would help define the optical depth thresholds1194

where aerosols are misclassified as clouds and provide the1195

basis for improving cloud detection in dusty and twilight1196

conditions.1197

V. CONCLUDING REMARKS1198

A multispectral algorithm has been developed for CERES1199

to discriminate clouds from cloud-free scenes in nonpolar1200

regions primarily using channels common to both VIRS and1201

MODIS to maintain some consistency across platforms. It has1202

already been applied to many years of VIRS and MODIS data.1203

Although it produces cloud amounts that are up to 10% less1204

than those determined from other techniques and satellite data,1205

the methodology appears to be quite successful at consistently1206

detecting most clouds that are of radiative significance and1207

correspond to those seen from the surface. Further validation1208

and error assessment studies are needed to fully quantify the1209

impact of any undetected clouds.1210

Through cross-calibration, it was found that several of the1211

channels common to VIRS, Terra MODIS, and Aqua MODIS1212

are inconsistent. The VIS channel calibration differences have1213

been discussed elsewhere [19]. The radiances measured by the1214

1.6-µm channel on the VIRS are too low by 19% compared to1215

the corresponding Terra MODIS channel and were increased1216

by 17%, on basis of earlier analyses, for use in the VIRS1217

Ed2 processing. The Terra 3.8-µm channel also shows some1218

significant differences compared with the same channel on1219

Aqua. It is important that users of the MODIS data recognize1220

these discrepancies. Future editions of the CERES algorithms1221

will take them into account during processing.1222

Given that CERES was short-lived on TRMM and the1223

1.6-µm channel failed on Aqua MODIS, the cross-platform1224

consistency requirement between the VIRS and MODIS masks1225

is no longer critical except between Aqua and Terra MODIS.1226

Thus, in the future, additional channels from the MODIS,1227

such as the CO2-absorption channels and the high-resolution1228

VIS channel, could be used to improve the detection of small1229

cumulus and thin cirrus that are currently missed using the1230

software editions described here. Other channels could also be1231

used to improve separation of aerosols and clouds, and other1232

high-resolution ancillary data sets, such as spectral surface1233

albedos [37], [38] and emissivities [42] from the MODIS land1234

surface properties teams, might be useful for refining the cloud1235

detection in low-contrast conditions.AQ6 1236

Because it relies on channels that are used on many oper-1237

ational meteorological satellites, the current CERES nonpo-1238

lar mask has already been adapted for use with several of1239

those satellites (see, e.g., [60]). Combined with the CERES1240

polar mask [13], [51] and cloud property retrieval [14], [47]1241

algorithms and the CERES scanner radiances, it has produced1242

numerous valuable data products covering much of the past1243

decade. Those products have already advanced our understand-1244

ing of the radiative impact of clouds (see, e.g., [2] and [61])1245

and their interaction with the climate system (see, e.g., [62]1246

and [63]). They have the potential for many other uses in the1247

future.1248
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